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Abstract 

The article’s primary purpose is to present a new robot calibration system proposed to improve the positional accuracy and 

repeatability of the ABB IRB 1520ID industrial robot having six degrees of freedom. Various calibration methods of 

articulated industrial robots are discussed. A new calibration technique is proposed, using a five Linear Variable differential 

Transformer (LVDT) probe and a master tool designed for varying payload capacity during experimentation. Analysis of 

different robot parameters and internal or external factors affecting the performance ofthe robot was done. The planning, 

execution, and experimentation set up all the stages are mentioned in detail. Finally, after the experimental setup, statistical 

tools and formulae to evaluate the positional accuracy and repeatability are also described in detail. 
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1. Introduction 

The recent advancements in automated production systems require highly accurate and repeatable 

industrial robots used as reprogrammable and multi-purpose devices. Remote-controlled experiments 

could operate the robot outsideand achieve the same results as onsite operation, thus fostering shortages 

of lab time, space, equipment, and teaching time. The primary motivation is reducing the production 

cycle of products and guarantees the required quality of both manipulating and technological operations 

performed by robots. Advancement in robotic applications such as  robot assisted surgery, measurement 

based on the robot, demands highly accurate robots and better positioning performance. To fulfill these 

requirements, robots must undergo a calibration process. To fulfill these requirements, robots must 

undergo a calibration process. 

Different performance criterias and related test methodologies for manipulation of industrial 

robots are mentioned in the ISO 9283:1998. The various performance characteristics are mentioned, 

such as distance accuracy and repeatability, pose accuracy and repeatability, variation in multidirectional 

pose accuracy, path velocity, path accuracy, repeatability characteristics, static compliance, etc. The 

significance of individual performance criteria is determined by the particular application of the test 

robot. Out of all requirements, accuracy and repeatability are mostly tested performance. Unidirectional 

position repeatability of the robot is defined as its ability of TCP (Tool Centre Point) returning at the 

same position repeatedly from the similar direction, hence minimizing the effects of backlashes in every 

individual joints on testing results. In comparison, multidirectional repeatability is determined as twice 

unidirectional repeatability. 
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Accuracy is the robot’s ability to attain a TCP’s programmed position concerning the base 

reference frame of the robot. Various factors influence the accuracy and repeatability of the robot, 

causing errors, significantly geometric inaccuracies, and stiffness of the robot’s arm are factors that 

influence position accuracy. 

The norms in ISO 9283:1998 describe the information of conditions for testing, measurement 

methods, and calculation of individual performance criteria, but it does not specify the measuring 

equipment. Many works of literature have addressed a non-contact type complete position measurement 

of the robot using different visual systems such as in [1]and [2] two cameras used for capturing 3D 

images, but with low accuracy. Some systems have fixed cameras attached to end effectors for viewing 

targets closely without zooming, and this reduces the view of the camera’s field [3]. The visual systems 

aforementioned are limited to measure the accurate position of the robot’s end effectors. In [4] forfull 

pose measurement use of an optical device for better accuracy, and calibration [5] of a SCARA robot. A 

specialapparatus is attached to the robot’s last link having intermediate point arrangements, and 

measurements are doneusing these points. It also has disadvantages as the manufacturing cost of special 

apparatus is high, pre-calibration ofa tool before using it, thus slow down the measuring process. 

However, from an economic view, devices range from digital indicators having low cost and optimal 

accuracy for measuring positioning performance as in ISO 9283:1998,through medium-cost laser 

interferometer to laser tracker, which is highly expensive. Primarily for robot calibration accuracy 

measurement, manufacturers use laser tracker commonly in [6]. Measure of position repeatability using 

FARO laser tracker given in [7], for IRB   1600 robot. However, one can select the measuring tool and 

calibration method that enlarge the measurement range, with high accuracy and low cost, elimination of 

pre-calibration of fixtures, and increased number of measurable cycles. 

 

 
Figure 1: Step by step execution of Calibration Process 

 

In this paper, a mechanical setup of five Linear Variable Differential Transformer (LVDT) probe 

is used as a measurement tool for the purpose of robot calibration of a 6 degree of freedom ABB IRB 

1520ID industrial robot.LVDT is a low-cost, high dynamic response, accurate and easy to set up the 

device. Also, a master tool is designed particularly for varying payload capacity while experimenting 

with CATIA software. After experimental setup, analysis is done to determine the different robot 

parameters like manipulator velocity, robot’s reach and payload, and other internal or external factors 

affecting robot performance. Further testing of robot positional accuracy and position repeatability can 
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be performed using the method given in ISO 9283:1998 standard. Afterward, in statistical analysis, 

various formulae are mentioned to evaluate robot positional repeatability and accuracy. 

The highlights and novelty of given paper are: 

 For test of Robot calibration, the mechanical arrangement consists of 5 LVDTs, such as 2 in X-

direction (X+X-), 2 in Y- direction (Y+ Y-), and one in Z-direction. 

 A master tool is manufactured for varying payload capacity during the experiment. 

 The number of cycles are counted using the inductive proximity sensor. 

The remaining paper is organized as Section II has explained the robot calibration system and 

methodology for itin detail. The experimental setup details are mentioned in brief in Section III. Finally, 

the planning of the experiment is described in Section IV. Further statistical analysis for robot positional 

accuracy and repeatability given in SectionV and conclusion in VI. 
 

2. Robot calibration system 
 

The process to improve robot accuracy by modification in control software is called robot calibration. 

There are two main types of calibration systems: static and dynamic calibration. Generally, static 

calibration is to identify the parameters that affect the remarkably static positioning performance of the 

robot. In contrast, for specifying parameters that influence the primary motion performances like 

velocity or forces, dynamic calibration is used. Static characteristics mainly involve the position and 

orientation of the end effector. The main focus of a static calibration system is to correct geometrical 

parameters like offsets in joint angle and geometries of the joint axis. Non-geometrical characteristics 

mainly involve compliance, i.e., the elasticity of joint and link, gear form errors like eccentricity error 

and transmission error, backlash, and other expansions due to temperature. The static robot calibration 

model considers both the geometrical and non-geometrical parameters as parameters are measured from 

the robot’s pose. After the completion of the identification of static parameters, dynamic calibration is 

performed. This calibration is committed explicitly to analyzing related dynamic parameters of the robot 

such as frictional effect in actuators and joints, stiffness, distribution of mass in the links, and many 

more. The paramount importance of dynamic robot calibration is in giant robots as they are subjected to 

very high velocity and high acceleration. Therefore a cumbersome experimental procedure is required. 

[8] 

 
Figure 2: Setup of Calibration [5] 
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Figure 3: Graphical representation of position repeatability [9] 

 

2.1. Methodology for robot calibration 
 

The entire setup of calibration is the joint work of a measurement system using a measuring tool, an 

offline model of the robot, and the controller as shown in Fig. 2. The diagram has blocks of robot 

manipulators whose position is judged by a measurement device. Mainly we have used a Linear variable 

differential transformer (LVDT) that sends the coordinates of the robot end-effector to an offline 

computer that is present in any external coordinate frame. This system has all information regarding 

modeling error, parameter identity routines, and robot joint coordinate’s compensation. After that, these 

new coordinates of the robot joint are sent to the robot controller for movement of the robot to the 

desired target as it is before the calibration, thus reduces errors. The procedures for robot calibration are 

divided into significant steps as shown in Fig. 1.Following is the execution methodology of the project 

after the experimentation design has been set up. The programming of robots at various angular/linear 

positions, speeds, and the zones will be done for number of execution of a cycle. For each process, the 

monitoring is done of real-time data on DAT-SPC in the form of graphical charts. After every cycle, the 

collection of data in excel format is done for analysing statistically. To apply the statistical process 

control method, the calculation of repeatability of the robot must be performed. 
 

3. Accuracy and repeatability of robot 
 

Industrial robots have been used for enormous applications, replacing men’s work in dangerous and 

repetitive tasks. However, robots have better repeatability but abysmal accuracy. The terms regarding 

one direction positional accuracy and repeatability are defined in ISO 9283:1998 [9]. ABB IRB 1520ID 

robot is used for automating the handling, pick and place, and welding operations within robot cell of 

automatic assembly. The works of literature state that precision of servo and sensor, gear backlashes, 

and manipulator speed are the parameters affecting repeatability, whereas kinematic modeling of the 

robot, part loading are very crucial factors for accuracy. Further we will be considering just two 

variables: positional accuracy (Ap) and positioning repeatability (Rp), as also described in [10] and [11]. 
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Figure 4: Graphical representation of positional accuracy [9] 

 

3.1. The one direction positional performance variables 
 

The one-directional Ap is the difference of commanded position (M) from the mean value i.e., 

barycenter-B which is obtained from the TCP’s positions reached repeatedly as given in Fig. 4. 

The dimensions are measured in (mm). Let i = 1, 2,...,m represents number of positions. In Fig.4, G is 

barycenter , commanded position given by N [xc; yc; zc], ith final reached position [xi; yi; zi]. 

The general formula for the representation of one direction position accuracy is: 

 
 

where, mean values of repeatedly reached (programmed) points from the cluster is termed as co-

ordinates of barycentre described by formulas:

 
The ith position attained by TCP has coordinates given by variables xi, yi, zi. 

Following are the calculations that are necessary for calculating one-directional positional 

repeatability Rp, which is ”the closeness of attained positions after m repetition of the robot to the 

similar commanded position in the same direction.” In Fig. 3 Rp shows radius of the sphere with 

barycentre G is the center. Lengths are given in (mm). Here Sl is the variable showing standard 

deviation for li, given by equation: 
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Figure 5: Imaginary ISO cube-ISO 9283:1998; Diagonal L(mm) [9] 

 

where, m is the number of times robot attains the same position in the similar conditions, whereas 

_l(mm) is mean position repeatability as given in standard ANSI/RIA R15.05. It is the mean of the 

difference of ith attained positions (xi; yi; zi) and mean of attained position d i.e. obtained in 

Eqs. 5, 6, 7, 

 
Using aforementioned equations, the calculation for positioning repeatability is termed as:

 
 

3.2. The Measurement method 
 

Same conditions are used to measure both performance variables Ap and Rp. It means, same data is used 

for calculation of Ap and Rp, but procedure to calculate them is different as discussed in subsection III-

A. ISO 9283:1998describes the measurement method, using an imaginary ISO cube, where corners have 

label from C1 to C8 shown in Fig. 5, with methods given in [12]. The cube is designated in the robot’s 

working space, where the robot is maximumly used. Additionally, the selected cube should have the 

maximum possible volume. The edges of the cube must be parallel to the basic coordinate axes system 

of the robot, i.e., identified with the help of the World Coordinate System (WCS).The points that are 

measured are arranged in a plane that is present in the cube. In Fig.5 the vertices C1, C2, C7and C8 of 

cube, makes an inclined plane for 6-DOF robot. 

The complete measurement procedure has 30 cycles of measurements in total, in which the 

movement of TCP point takes place to all individual points, which are P5 to P1 termed as tested 

positions. One direction approach of TCP’s point considers each of these points. Measurement of 

coordinates of each point is done only after reaching its position, and further calculations of Ap and Rp 

is followed. 

The testing of position performance has some conditions defined in norms of ISO 9283:1998. 

Some states are the loading effect of the robot’s end-effector, ambient temperature, and speed of TCP 

point. 
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4. Planning of the experiments 
 

In the planning phase of experimentation, the procedure given by authors in [13] was significantly 

followed step by step. This planning procedure was used to determine the control and constant variables 

and nuisance factors affecting the robot. Further robot’s accuracy and repeatability were selected 

performance variables for analysis. The positional data is used to determine these performance variables. 
 

4.1. Controlled Variables 
 

During the experiments, the control variables that need variation are chosen using different literature 

surveys and robots’ practical working. The pertinent knowledge for each variable that can be controlled 

is mentioned in table I. In table I, the two factors, speed, and payload are continuous, whereas the 

remaining factors are discrete. 
 

4.2. Held-constant variables and Nuisance factors 
 

Next, to control variables were determined, we must pay attention to factors that must be held constant, 

so that there must not be any error in the results of experimentation. The elements decided to be constant 

are described in table III. 
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5. Experimentation details 
 

5.1. The Measurement tools 
 

A Linear variable differential transformer (LVDT) is used as a measuring tool that accurately performs 

measurements. For testing Ap and Rp the measurement used has linearity of 0.05 % and resolution of 

1_m. Experimentation setup having 5 LVDT probes of Industrial robot is used for calibration method. 

The LVDT measurement principal test method for measuring four points located on the diagonal plane 

of an imaginary ISO cube given in standard ISO9283:1998 is used. The edge length of A=400 of an 

imaginary cube was selected in the active region of the IRB 1520IDrobot. The measuring points E1, E2, 

E4 must be placed along the diagonally opposite edges of the imaginary cube for each measured axis as 

shown in Fig. 5.The LVDT gives a very high output voltage that is practically linear and has 5mm 

displacement with infinite resolution. It also has a high sensitivity of 4V/mm. Therefore, care should be 

taken that no vibrations must be present in the surrounding during experimentation. It also has the added 

advantage of no sliding contacts hence less friction. In the experiment, the running of robot is done 

thirty-five times (n=35) for trials of controllable external/internal factors. 

To perform calibration test of robot, mechanical arrangement was done consisting of 5 LVDT 

setups such as 2 inX-direction (X+ X-), 2 in Y- direction (Y+ Y-) and 1 in Z-direction. 

 

 
Figure 6: Design space for DOE 

 

 The master tool designed for experiment must be in connection with the end-effector of robot. 

 Inductive proximity sensor in the vicinity of robot is used to count the number of cycles. 
 

5.2. The Master tools 
 

The master tool was designed and manufactured for varying the payload capacity during 

experimentation. Various material that can be used for manufacturing includes Teflon (500 gm), steel 
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(4.5 kg), aluminum (3.2 kg), nylon (1.1kg). We have mainly used nylon due to its strength, lightweight, 

durability, and cost-effectiveness. 

1)Plate thickness (t): The plate thickness (t) is calculated using the formula as given in Eq. (12) and (13). 

 

 

where,  is tensile strength, M is maximum plate load supporting weight of almost 5.1 kg, ymax is the 

yield strength, 

w is the plate width and I represents ...... 

Substituting all values with safety factor of 1.5 in Eq. (12), we get plate thickness (t) as: 

 
The value signifies that the plate loading is insignificant but during experiment when robot will be in 

motion all the dynamic forces acting on the plate are significant 

2) Cylinder outer diameter (Do): The outer diameter (Do) of the cylindrical part of the master tool is 

calculated. Here the inner diameter Di is constrained as Di = 75mm. 

 
where, _ is tensile stress and A is the area of cylinder, F is the maximum plate load with weight of 3 kg. 

 
Substituting all the values in Eq. (16) we get, 

 
Since here also same nylon material is used with high tensile stress, the thickness of cylinder ((Do-

Di)/2=0.014 mm) 

is negligibly small, so any thickness can be selected that is easily available/manufactured. 

3) Weight calculations: The weight calculations for the cylinder, plate, and probe are calculated using 

the formula mentioned in Eq.18. A detailed explanation of the material used for manufacturing, the 

density of the material, andthe calculated weight is shown in Table IV. 
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C. Design of Experiment 

 

Critical process parameters are generally affected by multiple factors such as velocity of manipulator, 

payload, reach adopting a trial and error or one factor at a time approach, we prefer methodology termed 

as Design of Experiment (DOE). 

It is a multivariate approach that finds relationship between the factors affecting the process and 

output of the same process by varying the potentially influential factors, simultaneously. 

As mentioned in Fig. (6), there are three parameters like payload, speed and robot’s reach having 

two levels either high or low. So ultimately 23 test conditions are possible, i.e. 8 test conditions. For this 

the experiments are performed in systematic way within accurately controlled framework under 

reproducible conditions. Designs are particularly independent of the process. 
 

6. Conclusion 
 

The paper presents the study of the most influential performance parameters of a robot. The significant 

attention is to focus on one-directional Ap and Rp testing of ABB IRB 1520ID industrial robot with the 

help of measuring device like LVDT, which is mainly used for contact type of measurement. LVDT is a 

low cost, accurate, high dynamic response, and easy to set up, which is not addressed in any literature 

before, being the novelty of the work. Also, a master tool is designed for varying payloads. Finally, the 

most significant factors affecting both the accuracy and repeatability of an industrial robot are found. 
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